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Abstract
A modified quantum teleportation protocol broadens the scope of the classical
forbidden-interval theorems for stochastic resonance. The fidelity measures
performance of quantum communication. The sender encodes the two classical
bits for quantum teleportation as weak bipolar subthreshold signals and sends
them over a noisy classical channel. Two forbidden-interval theorems provide
a necessary and sufficient condition for the occurrence of the nonmonotone
stochastic resonance effect in the fidelity of quantum teleportation. The
condition is that the noise mean must fall outside a forbidden interval related to
the detection threshold and signal value. An optimal amount of classical noise
benefits quantum communication when the sender transmits weak signals,
the receiver detects with a high threshold and the noise mean lies outside
the forbidden interval. Theorems and simulations demonstrate that both
finite-variance and infinite-variance noise benefit the fidelity of quantum
teleportation.

PACS numbers: 03.67.Hk, 89.70.+c, 05.40.−a

1. Introduction

Noise can sometimes benefit the detection of weak signals [1]. Researchers have dubbed
this counterintuitive phenomenon as the stochastic resonance (SR) effect [2]. A typical
performance curve displays that performance is poor for low noise values, increases to a
maximal value for some optimal noise and tapers down again when too much noise is present
(figure 2 displays such performance curves).

The SR noise benefit occurs in a diverse range of systems from neurons [3] to supercon-
ducting quantum interference devices [4] to crayfish [5]. The SR noise benefit also occurs
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in the quantum regime with unique quantum effects such as squeezed light [6, 7], tunnel-
ing [8], quantum jumps in a micromaser [9], electron shelving [10] and entanglement [11].
All the aforementioned classical and quantum scenarios for SR involve the detection of weak
signals.

The ingredients for a noise benefit are weak signals, a nonlinear detection scheme and
a source of noise energy. Noise energy does not benefit communication in linear systems
because amplification only increases the noise in the signal. But small amounts of noise
energy can be beneficial in a simple nonlinear threshold detection scheme. It can boost the
signal above a threshold when it otherwise would be undetectable. The noise benefit occurs
in most nonlinear systems because they act as threshold systems at some level.

The classical forbidden-interval theorems [12, 13] apply to a simple threshold system.
The theorems give necessary and sufficient conditions for an SR noise benefit in a memoryless
threshold neuron. The communication model for the theorems has a simple form in terms of
a threshold function with threshold T and subthreshold bipolar signals with values −A and A

where −A < 0 < A < T . The forbidden-interval condition is that an SR noise benefit occurs
if and only if the noise mean does not lie in the interval (T − A, T + A). The significance of
the theorems is that the forbidden-interval condition implies that the SR noise benefit occurs in
a memoryless threshold neuron for any finite-variance noise or infinite-variance alpha-stable
noise [14].

I broaden the scope of the classical forbidden-interval theorems by constructing a modified
teleportation protocol in which classical noise enhances the fidelity of quantum teleportation
(figure 1). This phenomenon is an SR noise benefit because the enhancement occurs for
some optimal non-zero classical noise level. The original quantum teleportation protocol uses
one ebit of shared entanglement and two noiseless feedforward classical bits to transmit one
qubit [15]. Later work considers a noisy teleportation protocol that sends quantum information
with a noisy classical channel [16]. I consider a similar teleportation model where the
entanglement is noiseless and the classical communication is over a noisy classical channel.
But in this protocol, the transmitter Alice encodes the two classical bits as two weak,
subthreshold, bipolar classical signals and sends them over the noisy channel. A receiver
Bob then thresholds to determine the two classical bits Alice sent. This modified teleportation
protocol then leads to an SR noise benefit for the fidelity of quantum communication.

The fidelity for the modified teleportation protocol qualitatively behaves similarly to
the mutual information measure for the classical SR noise benefit in neurons in [12, 13].
The similarity is qualitative because the fidelity displays the full inverted-U signature of
the SR noise benefit given satisfaction of the forbidden-interval condition. But the fidelity
measures quantum communication performance while the mutual information measures
classical communication performance. Theorems 1 and 2 have the same forbidden-interval
condition but now apply to the fidelity measure.

Two forbidden-interval theorems—theorems 1 and 2—give necessary and sufficient
conditions for the SR noise benefit in quantum transmission. The first theorem holds for
any finite-variance noise and the second theorem holds for infinite-variance alpha-stable
noise. The proof strategy for theorems 1 and 2 is the same as the earlier strategy in [12, 13].
The original proof strategy in [12, 13] constructed all crucial arguments in terms of detection
probabilities. The simple and elegant expression for the fidelity in lemma 2 in terms of
detection probabilities implies that the same proof strategy is applicable. The proof strategy is
to show that the fidelity must increase from its minimum of 1/2 with the addition of classical
noise. This increase occurs if the fidelity approaches its minimum of 1/2 as the variance
or the dispersion of the noise decreases to zero. In section 4, I show that the SR effect
occurs even when the entanglement resource is imperfect, i.e., if the sender and receiver share
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Figure 1. Modified quantum teleportation protocol with a noisy classical channel and thresholding.
Thick lines denote classical information and thin lines denote quantum information. Alice wants
to teleport quantum state A to Bob. Alice and Bob share an ebit. Alice receives two classical bits
from a Bell measurement of her state A and her half of the shared ebit. Alice encodes the two
classical bits as weak bipolar signals and transmits them over a noisy channel. Bob thresholds the
signal he receives to retrieve two classical bits. Bob then performs a conditional rotation of his
state by X̂ or Ẑ or both in the hope that he rotates his state to be Alice’s original state A.

noisy entanglement. Theorems 1 and 2 provide a theoretical underpinning to explain why the
SR effect occurs in the modified teleportation protocol just as the original forbidden-interval
theorems explain why the SR effect occurs in a noisy threshold neuron.

Ting has previously considered the SR effect in quantum communication [17–19]. He
specifically considered the response of the coherent information and the fidelity to noise in
several types of Pauli channels. He found that the coherent information quantum information
measure does not exhibit a noise-enhanced SR effect, but the fidelity does exhibit such
an effect. The present work is similar to his because I consider the fidelity of quantum
communication as the measure of performance, but the model under which the stochastic
resonance effect occurs is significantly different because I employ a modified teleportation
protocol with subthreshold classical signals, while he considered the effect of transmitting
qubits over noisy qubit channels.

2. A model for stochastic resonance in quantum teleportation

I first review the noiseless quantum teleportation protocol [15] before presenting the
modified teleportation protocol. Suppose that Alice and Bob share one ebit—a maximally
entangled quantum state |�+〉AB ≡ (|0〉A |0〉B + |1〉A |1〉B)/

√
2. Suppose Alice wants to

transmit a quantum bit |ψ〉A′ = α |0〉A′
+ β |1〉A′

to Bob. Define quantum state |φ〉A′AB as the
joint state of system A′ and ebit |�+〉AB :

|φ〉A′AB ≡ |ψ〉A′ ⊗ |�+〉AB. (1)

Alice can teleport state A′ to Bob by performing a two-qubit Bell measurement on qubit A′

and on her half A of the shared ebit. Alice receives two classical bits s1s2 from the Bell
measurement where ∀i ∈ {1, 2}, si ∈ {0, 1}. The Bell measurement is probabilistic so that
bits s1 and s2 are realizations of two Bernoulli random variables S1 and S2, respectively.
The following useful lemma gives the density of the two classical bits s1s2 that Alice
receives from the Bell measurement. Lemma 1 follows simply from the original teleportation
protocol [15]. The appendix gives the proof of the following lemma and of all following
lemmas and theorems.
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Lemma 1. Random variables S1 and S2 from the Bell measurement are independent and
identically distributed with equal probability of being zero or one:

PSi
(si) = 1/2 ∀i ∈ {1, 2} ∀si ∈ {0, 1} . (2)

Alice transmits the two classical bits s1s2 over a noiseless classical channel. Bob receives
the two classical bits and performs a conditional rotation Ẑs2X̂s1 on his half B of the shared
ebit. Ẑ and X̂ are the Pauli operators [20]. The teleportation is a perfect success if Alice can
perform a perfect Bell measurement, if Alice sends two noiseless classical bits to Bob, and if
Bob can perform the conditional unitaries without any small error in the rotation. The state in
Bob’s lab B is |ψ〉B = α |0〉B + β |1〉B when teleportation is perfect.

I now construct a modified teleportation protocol that uses subthreshold classical signals
(figure 1). This model leads to an SR noise benefit for the fidelity of teleportation. Suppose
Alice still performs a perfect two-qubit Bell measurement on her qubit |ψ〉A′

and her half A of
the shared ebit. Alice receives two random classical bits s1 and s2 from the Bell measurement.
Let S be a Bernoulli random variable with equal probability for outcome zero or outcome
one. Bits s1 and s2 are independent realizations of random variable S by lemma 1. Suppose
Alice cannot transmit noiseless classical bits and must instead use a continuous additive noisy
classical channel for transmission [21]. Suppose further that Alice sends two weak, bipolar,
subthreshold signals over the additive noisy classical channel. She encodes the random
bits with the map (−1)S+1 A so that signal value −A corresponds to ‘0’ and signal value A

corresponds to ‘1’. The signals are weak in the sense that they are subthreshold—the threshold
θ is larger than the signal values: −A < 0 < A < θ . The additive noisy channel corrupts
the two classical signals by adding a random noise N. Suppose the noise N for two uses of
the channel is independent and identically distributed. The noise N and random variable S
are independent because the noise N plays no role in the Bell measurement. The two signals
Bob receives from both uses of the channel are independent realizations of random variable
(−1)S+1 A + N . Suppose Bob detects the classical signals by thresholding with a threshold θ .
He counts a ‘1’ if the signal he receives is greater than θ and counts a ‘0’ if the signal is
less than θ . Let y1 and y2 be the two bits from Bob’s detection. Both bits are independent
realizations of a random variable Y where

Y = u
(
(−1)S+1 A + N − θ

)
, (3)

and u is the unit step or Heaviside function. The quantum state Bob possesses after Alice
performs the Bell measurement is |ψs1s2〉B ≡ Ẑs2X̂s1 |ψ〉B . Bob does not have knowledge of
bits s1 and s2 so he cannot rotate his state to be the same as Alice’s original qubit |ψ〉A with
probability one. He can perform a rotation of his state based only on bits y1 and y2. So Bob
performs a conditional rotation Ẑy2X̂y1 in an attempt to rotate the state |ψs1s2〉B to state |ψ〉B .
Suppose Bob performs a noiseless Pauli Ẑ, X̂, or ẐX̂ gate when he performs the conditional
rotation. His resulting state is |ψy1y2s1s2〉B ≡ Ẑy2X̂y1 |ψs1s2〉B . He does not apply the proper
rotation if y1y2 	= s1s2. Thus Bob’s state is a mixture ρB equal to the following matrix:

1∑
y1, y2,

s1, s2 = 0

pY1,Y2,S1,S2 (y1, y2, s1, s2)
∣∣ψy1y2s1s2

〉 〈
ψy1y2s1s2

∣∣ , (4)

where pY1,Y2,S1,S2 is the joint probability distribution of random variables Y1, Y2, S1 and
S2 (we evaluate it later on). The modified teleportation protocol leads to noisy quantum
communication because Bob’s final state is the noisy mixed state above. Alice cannot teleport
her state perfectly to Bob in the modified teleportation protocol with Alice encoding with
subthreshold signals and Bob detecting with a threshold system.
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The fidelity measure quantifies the quality of Alice and Bob’s quantum communication
[20]. The fidelity F is as follows:

F ≡ 〈ψ | ρB |ψ〉 , (5)

where |ψ〉 is Alice’s original state |ψ〉A′
and ρB is Bob’s mixed state from (4). Several example

values of the fidelity eludicate some meaning behind this measure of quantum communication.
The fidelity F = 1 if and only if Alice’s state is the same as Bob’s state. F = 0 if and only if
Alice and Bob’s states are orthogonal. Suppose Bob ignores the classical information Alice
sends in the teleportation protocol, randomly chooses a rotation and does not record which
rotation he performs. Then his state is maximally mixed with density matrix ρB = I/2.
So Alice and Bob’s fidelity F = 1/2 if ρB = I/2. Alice and Bob can obtain a fidelity of
teleportation equal to 2/3 even when they do not share entanglement and use only noiseless
classical communication [22].

The fidelity for the modified teleportation protocol admits a simple mathematical form in
terms of four quantities: qX, qZ, qXZ and P. Define qX, qZ, qXZ as

qZ ≡ ∣∣〈ψ | Ẑ |ψ〉∣∣2 , (6)

qX ≡ ∣∣〈ψ | X̂ |ψ〉∣∣2 , (7)

qXZ ≡ ∣∣〈ψ | X̂Ẑ |ψ〉∣∣2 . (8)

The quantities qX, qZ and qXZ depend on the probability amplitudes α, β of Alice’s state
|ψ〉A′

. The quantities qX, qZ and qXZ are nonnegative and convex so that qX + qZ + qXZ = 1.
Define the nonnegative quantity P as the difference of conditional probabilities:

P ≡ pY |S (0|0) − pY |S (0|1) = pY |S (1|1) − pY |S (1|0) . (9)

The proof of the nonnegativity of P and the equality of the above conditional probability
differences is in the proof of lemma 2. Note that equality of pY |S (0|0) − pY |S (0|1) and
pY |S (1|1)−pY |S (1|0) holds because the classical signals in the model are subthreshold. As a
simple example of this equality, note that pY |S (1|1) = 0, pY |S (1|0) = 0, pY |S (0|0) = 1 and
pY |S (0|1) if there is no noise on the classical channel. Consider that lemma 2 gives the simple
mathematical expression for the fidelity F.

Lemma 2. The fidelity F between Alice’s initial quantum state |ψ〉A′
and Bob’s mixed state

ρB is

F = 1

2
+

P (qX + qZ + qXZP )

2
, (10)

given the modified teleportation protocol.

The noisy classical channel affects only parameter P and parameter P varies between zero
and one depending on how much noise is present in the channel. The other parameters qX, qZ

and qXZ depend on the quantum state |ψ〉A′
that Alice wishes to teleport—they depend on the

probability amplitudes α, β. The noisy channel does not affect qX, qZ and qXZ so that the
fidelity changes with the noisiness of the channel regardless of the quantum state that Alice
teleports.

The mutual information measure for classical SR has a more complicated relationship
with parameter P than does the above fidelity measure [12, 13]. It is elegant that the fidelity
measure for quantum communication has such a simple quadratic relation with parameter
P given the modified teleportation protocol. Corollary 1 relates the fidelity of teleportation
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(a) (b)

Figure 2. Stochastic resonance in the modified teleportation protocol. Alice possesses the state
(|0〉 + |1〉)/√2 and wishes to teleport it to Bob. The graphs show the smoothed teleportation
fidelity (thick line) and min–max deviation (dotted lines) as a function of (a) the variance of
classical Gaussian noise and a function of (b) the dispersion of classical Cauchy noise for 100
simulation runs. Alice encodes bipolar signals with amplitude A = 1.1 and Bob decodes with
threshold θ = 1.6. Each run generated 10 000 input–output signal pairs to estimate the fidelity of
teleportation. Graph (a) is a simulation instance of the if-part of theorem 1 with finite-variance
Gaussian noise. The noise mean μ = 0 and lies outside the forbidden interval (0.5, 2.7). The
average teleportation fidelity exceeds the classical limit of 2/3 [22] with F = 0.6682 for a noise
standard deviation σopt = 1.42. Graph (b) is a simulation instance of the if-part of theorem 2
with infinite-variance Cauchy noise. The noise location a = 0 and lies outside the forbidden
interval (0.5, 2.7). The average teleportation fidelity does not exceed the classical limit of 2/3
with F = 0.6213 for a noise dispersion γopt = 1.11.

to the statistical relationship between random variables S and Y. The relationship follows
by determining the quantity P when random variables S and Y are statistically dependent,
statistically independent and when S and Y correlate perfectly. The relationship of the fidelity
F with random variables S and Y follows directly from the relationship of parameter P with S
and Y by using (10).

Corollary 1. The fidelity F between Alice’s initial quantum state |ψ〉A′
and Bob’s mixed state

ρB is minimum at 1/2 given the modified teleportation protocol. The fidelity F obtains this
minimum value if and only if random variable Y is independent of random variable S. The
fidelity F > 1/2 if Y and S are statistically dependent. The fidelity F is equal to its maximum
of one when detection is perfect.

Corollary 1 is useful because it provides both a lower and upper bound for the fidelity of
teleportation given the modified teleportation protocol. It also gives the scenarios in which
these lower and upper bounds saturate. The fidelity cannot decrease below 1/2 for any
amount of noise in the classical channel. This lower bound is a powerful way to characterize
the stochastic resonance effect in terms of the fidelity. The SR noise benefit has a nonmonotone
signature because the performance measure decreases as the noise level decreases. So the
fidelity should decrease to its minimum of 1/2 when the noise variance or dispersion of the
channel decreases to zero. This statement is equivalent to saying that the fidelity increases
from its minimum value of 1/2 as the noise variance or dispersion of the channel increases:
what goes down must come up. The if-part of the theorems employ the what goes down
must come up strategy to show that the fidelity approaches its minimum of 1/2 when the
noise vanishes similar to the way that the mutual information approaches its minimum of
zero when the noise vanishes [12]. Corollary 1 is also useful because it gives the situation
in which the fidelity is equal to its maximum of one. This situation provides a powerful way

6
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(a) (b)

Figure 3. No stochastic resonance when the noise mean or location lies in the forbidden interval.
Alice possesses the state (|0〉 + |1〉)/√2 and wishes to teleport it to Bob. The graphs show the
smoothed teleportation fidelity (thick line) and min–max deviation (dotted lines) as a function of
(a) the variance of classical Gaussian noise and a function of (b) the dispersion of classical Cauchy
noise for 100 simulation runs. Alice encodes bipolar signals with amplitude A = 1.1 and Bob
decodes with threshold θ = 1.6. Each run generated 10 000 input–output signal pairs to estimate
the fidelity of teleportation. Graph (a) is a simulation instance of the only-if part of theorem 1
with finite-variance Gaussian noise. The noise mean μ = 0.7 and lies inside the forbidden interval
(0.5, 2.7) so that no SR occurs. Graph (b) is a simulation instance of the only-if part of theorem 2
with infinite-variance Cauchy noise. The noise location a = 0.7 and lies inside the forbidden
interval (0.5, 2.7) so that no SR occurs.

of determining when the SR noise benefit does not occur. The SR noise benefit does not
occur when the fidelity of teleportation increases to its maximum value of one as the noise
variance or dispersion decreases to zero. The only-if part of the theorems show that the fidelity
approaches its maximum value of one as the noise vanishes similar to the way that the mutual
information approaches its maximum of one as the noise vanishes [13]. I employ these proof
strategies involving the lower and upper bounds from corollary 1 in the proofs of the main
results: theorems 1 and 2.

3. Forbidden-interval theorems for quantum teleportation

3.1. SR with finite-variance noise

Theorem 1 below characterizes the nonmonotone SR noise benefit when the classical
channel noise has finite variance. Theorem 1 states that the modified teleportation protocol
exhibits the SR effect if and only if the classical noise mean obeys an interval constraint. The
noise mean must lie outside a forbidden interval that depends on Bob’s detection threshold
θ and signal value A. The teleportation fidelity defined in (10) quantifies the SR noise
benefit. Figure 2(a) is a simulation instance of the if-part of theorem 1 and figure 3(a) is
a simulation instance of the only-if part of theorem 1 when the classical channel noise is
Gaussian distributed. The significance of theorem 1 is that it holds for any finite-variance
noise regardless of the particular density of the noise.

Theorem 1. Suppose that the channel noise has finite variance σ 2 and mean μ. Suppose that
there is some statistical dependence between Alice’s classical signal S and Bob’s threshold
result Y so that the fidelity obeys F > 1/2. Then the quantum teleportation system features
the nonmonotone SR effect if and only if the noise mean does not lie in the forbidden interval:
μ /∈ (θ − A, θ + A). The nonmonotone SR effect is that F → 1/2 as σ 2 → 0.

7
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3.2. SR with infinite-variance noise

The uncountably infinite family of alpha-stable noise densities models many diverse physical
phenomena that include impulsive interrupts in phone lines, underwater acoustics, low-
frequency atmospheric signals and gravitational fluctuations [14]. The parameter α for the
alpha-stable noise density lies in the interval (0, 2]. It characterizes the thickness of the curve’s
tails: α = 1 corresponds to the thick-tailed Cauchy random variable and α = 2 corresponds
to the familiar thin-tailed Gaussian random variable. The curve’s tail thickness increases as
α decreases. The generalized central limit theorem states that all and only normalized stable
random variables converge in distribution to a stable random variable [23]. The characteristic
function ϕ (ω) of a general alpha-stable random variable is

ϕ (ω) = exp
{

iaω − γ |ω|α
(

1 + iβsign(ω) tan
(απ

2

))}
, (11)

for α 	= 1 and

ϕ (ω) = exp {iaω − γ |ω| (1 − 2iβsign(ω) ln (|ω|) /π)} , (12)

for α = 1 where

sign(ω) =
⎧⎨
⎩

1 : ω > 0
0 : ω = 0

−1 : ω < 0
, (13)

and i = √−1, 0 < α � 2,−1 � β � 1, and γ > 0. Parameter β is a skewness parameter
where β = 0 gives a symmetric density. Theorem 2 holds for any skewness β. Parameter γ

is a dispersion parameter similar in spirit to the variance. It quantifies the spread or width of
the alpha-stable density. Thick-tailed alpha-stable noise may corrupt Alice’s classical bipolar
signals if she sends them over an impulsive phone line or as a low-frequency signal through
the atmosphere.

Theorem 2 characterizes the nonmonotone SR noise benefit when the classical channel
noise has an infinite-variance alpha-stable density. Figure 2(b) is a simulation instance of the
if-part of theorem 2 and figure 3(b) is a simulation instance of the only-if part of theorem 2 when
the classical channel noise is infinite-variance Cauchy distributed. Theorem 2 demonstrates
that the SR noise benefit for quantum communication is robust because it occurs even in
situations when the classical noise has infinite variance.

Theorem 2. Suppose the channel noise has an infinite-variance alpha-stable density with
dispersion γ and location a. Suppose that there is some statistical dependence between
Alice’s classical signal S and Bob’s threshold result Y so that the fidelity obeys F > 1/2.
Then the quantum teleportation system features the nonmonotone SR effect if and only if the
noise location does not lie in the forbidden interval: a /∈ (θ − A, θ + A). The nonmonotone
SR effect is that F → 1/2 as γ → 0.

4. Imperfect entanglement

The entanglement shared between Alice and Bob may not always be perfect, and it is natural
to wonder whether the SR effect still occurs. I briefly show that variations of the above
forbidden-interval theorems hold for the more realistic case where the shared entanglement is
in an imperfectly entangled Werner-like state [24]. Thus, the SR effect still occurs when the
entanglement is imperfect.

8
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Let us now suppose that Alice and Bob share the following Werner-like state as the
entanglement resource for teleportation:

ρW = FW

∣∣�+〉 〈�+
∣∣AB

+ (1 − FW) πA ⊗ πB,

where π is the maximally mixed qubit state. We can interpret the above state as being a
perfectly entangled ebit with probability FW and being in a completely mixed state with
probability 1 − FW .

Let us consider using the above imperfectly entangled resource for the modified
teleportation protocol. Suppose that Alice and Bob perform the modified teleportation
protocol. It is straightforward to show that Bob’s resulting state is as it was before with
probability FW and it is the completely mixed state with probability 1 − FW . Then, omitting
the details, the resulting expression for the fidelity is

F = FW

(
1

2
+

P (qX + qZ + qXZP )

2

)
+

1 − FW

2

= 1

2
+

FWP (qX + qZ + qXZP )

2
.

The above expression is similar to that we obtained before, with the difference that the fidelity
now depends on the parameter FW from the Werner-like state. Thus, the fidelity of teleportation
in this ‘imperfect entanglement’ scenario still bears the SR signature because we can apply all
of the above forbidden-interval theorems.

5. Conclusion

The theorems for the SR noise benefit prove that small amounts of noise can enhance the
fidelity of quantum teleportation given the modified teleportation protocol. The theorems
lend credence to the conjecture in [12] that an SR noise benefit should occur in any nonlinear
system whose input–output structure is a threshold system. The theorems show that the SR
effect is robust because it occurs for all finite-variance noise types and for infinite-variance
alpha-stable noise.

The theorems do not guarantee a specific performance for the teleportation fidelity. They
do not even guarantee that the teleportation fidelity exceeds the classical limit. Figure 2(b) is
an example of a failure to exceed the classical limit of 2/3 due to impulsive Cauchy noise.
The theorems guarantee only that performance with noise exceeds performance without noise
given the satisfaction of the forbidden-interval condition.

Some may question whether the modified teleportation protocol leads to a true ‘quantum’
stochastic resonance. It is after all not quantum noise that affects the fidelity in this model but
rather classical noise. But several quantum effects are present in the modified teleportation
protocol such as entanglement, Bell measurements and the coherence of the quantum state
being teleported. The interplay of quantum effects with the noisy classical channel argues that
we should categorize this result as a classical-noise-assisted quantum stochastic resonance.

The theorems also suggest that the SR noise benefit will occur in any quantum protocol
that uses feedforward classical communication with subthreshold signals. Protocols such
as entanglement purification, distillation, gate teleportation [25] and the Knill–Laflamme–
Milburn scheme for linear optical quantum computation [26] all require classical signals. Any
quantum protocol with feedforward memoryless classical communication should exhibit the
SR noise benefit when the sender transmits subthreshold classical signals over a noisy channel
and the receiver performs threshold detection.
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Appendix. Proofs

Proof (Lemma 1). Define states |�+〉A′A, |�−〉A′A, |�+〉A′A and |�−〉A′A as the Bell basis
states: ∣∣�+

〉A′A ≡ |0〉A′ |0〉A + |1〉A′ |1〉A√
2

, (A.1)

∣∣�−〉A′A ≡ |0〉A′ |0〉A − |1〉A′ |1〉A√
2

, (A.2)

∣∣�+
〉A′A ≡ |0〉A′ |1〉A + |1〉A′ |0〉A√

2
, (A.3)

∣∣�−〉A′A ≡ |0〉A′ |1〉A − |1〉A′ |0〉A√
2

. (A.4)

Make the following additional assignments: |�+〉A′A ≡ |�00〉A′A, |�−〉A′A ≡ |�01〉A′A,

|�+〉A′A ≡ |�10〉A′A, |�−〉A′A ≡ |�11〉A′A. Define the rotated states |ψ00〉B , |ψ01〉B , |ψ10〉B
and |ψ11〉B as follows:

|ψ00〉B ≡ |ψ〉B ≡ α |0〉B + β |1〉B , (A.5)

|ψ01〉B ≡ α |0〉B − β |1〉B = Ẑ |ψ〉B , (A.6)

|ψ10〉B ≡ α |1〉B + β |0〉B = X̂ |ψ〉B , (A.7)

|ψ11〉B ≡ α |1〉B − β |0〉B = X̂Ẑ |ψ〉B . (A.8)

Write the joint state |φ〉A′AB from (1) in the following form by performing a few algebraic
steps [15]:

|φ〉A′AB = 1

2

⎡
⎢⎢⎢⎣

|�00〉A′A ⊗ |ψ00〉B +
|�01〉A′A ⊗ |ψ01〉B +
|�10〉A′A ⊗ |ψ10〉B +
|�11〉A′A ⊗ |ψ11〉B

⎤
⎥⎥⎥⎦ . (A.9)

Alice performs a measurement in the Bell basis on her two qubits A′ and A. The joint
state |φ〉A′AB collapses to one of four states in the set {|�00〉A′A ⊗ |ψ00〉B , |�01〉A′A ⊗
|ψ01〉B , |�10〉A′A ⊗ |ψ10〉B , |�11〉A′A ⊗ |ψ11〉B}. Alice’s measurement in the Bell basis gives
two classical bits s1s2 given by the subscripts in the above equation. Suppose the two bits s1

and s2 are realizations of two Bernoulli random variables S1 and S2, respectively. Squaring
the probability amplitudes of each state in the superposition of quantum state |φ〉A′AB gives

10
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an equal probability of 1/4 for each possible state resulting from the Bell measurement. The
joint distribution of S1 and S2 is as follows:

pS1,S2 (s1, s2) = 1
4 ∀s1, s2 ∈ {0, 1} . (A.10)

Thus both S1 and S2 are uniform random variables with the same density. The marginal
probabilities must also be uniform:

pS1 (s1) = 1
2 ∀s1 ∈ {0, 1} , (A.11)

pS2 (s2) = 1
2 ∀s2 ∈ {0, 1} . (A.12)

S1 and S2 are independent random variables because the joint density is the product of the
marginals.

�

Proof (Lemma 2). Random variables Y1 and S1, and Y2 and S2 are independent because of
the reasoning in section 2. Consider the joint density pY1,Y2,S1,S2 (y1, y2, s1, s2) for Bob’s two
random variables Y1 and Y2 and Alice’s two random variables S1 and S2:

pY1,Y2,S1,S2 (y1, y2, s1, s2) (A.13)

= pY1,S1|Y2,S2 (y1, s1|y2, s2) pY2,S2 (y2, s2) (A.14)

= pY1,S1 (y1, s1) pY2,S2 (y2, s2) (A.15)

= pY1|S1 (y1|s1) pS1 (s1) pY2|S2 (y2|s2) pS2 (s2) (A.16)

= pY1|S1 (y1|s1)

(
1

2

)
pY2|S2 (y2|s2)

(
1

2

)
(A.17)

= 1

4
pY |S (y1|s1) pY |S (y2|s2) . (A.18)

Consider the projectors |ψy1y2s1s2〉〈ψy1y2s1s2 | in Bob’s mixed state ρB from (4):

|ψy1y2s1s2〉〈ψy1y2s1s2 | (A.19)

= Ẑy2X̂y1 |ψs1s2〉〈ψs1s2 |X̂y1Ẑy2 (A.20)

= Ẑy2X̂y1X̂s1Ẑs2 |ψ〉 〈ψ | Ẑs2X̂s1X̂y1Ẑy2 (A.21)

= Ẑy2X̂y1⊕s1Ẑs2 |ψ〉 〈ψ | Ẑs2X̂y1⊕s1Ẑy2 (A.22)

=
(

(−1)y1⊕s1 X̂y1⊕s1Ẑy2Ẑs2

|ψ〉 〈ψ | Ẑs2Ẑy2 (−1)y1⊕s1 X̂y1⊕s1

)
(A.23)

= X̂y1⊕s1Ẑy2⊕s2 |ψ〉 〈ψ | Ẑy2⊕s2X̂y1⊕s1 (A.24)

= ∣∣ψy1⊕s1,y2⊕s2

〉 〈
ψy1⊕s1,y2⊕s2

∣∣ . (A.25)

So Bob’s mixed state ρB is as follows by substituting (A.18) for the joint density and
substituting (A.25) for the projectors |ψy1y2s1s2〉〈ψy1y2s1s2 |:

ρB = 1

4

1∑
y1, y2,

s1, s2 = 0

(
pY |S(y1|s1)pY |S(y2|s2)

|ψy1⊕s1,y2⊕s2〉〈ψy1⊕s1,y2⊕s2 |
)

. (A.26)

11
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Now use the above expression for Bob’s mixed state to compute the fidelity F between Alice’s
original state |ψ〉A′

and Bob’s mixed state ρB :

F = 〈ψ |ρB | ψ〉 (A.27)

=
〈
ψ

∣∣∣∣∣14
1∑

y1, y2,
s1, s2 = 0

(
pY |S (y1|s1) pY |S (y2|s2)∣∣ψy1⊕s1,y2⊕s2

〉 〈
ψy1⊕s1,y2⊕s2

∣∣
) ∣∣∣∣∣ψ

〉
(A.28)

= 1

4

1∑
y1, y2,

s1, s2 = 0

(
pY |S (y1|s1) pY |S (y2|s2)∣∣〈ψ |ψy1⊕s1,y2⊕s2

〉∣∣2
)

. (A.29)

The quantity |〈ψ |ψy1⊕s1,y2⊕s2〉|2 can take one of the following four values depending on the
bit values y1, y2, s1 and s2:∣∣〈ψ | Ẑ |ψ〉∣∣2 = |α|4 − 2 |α|2 |β|2 + |β|4 , (A.30)

∣∣〈ψ | X̂ |ψ〉∣∣2 = 2
(
|β|2 |α|2 + Re

{
β2
(
α∗)2}) , (A.31)

|〈ψ |X̂Ẑ|ψ〉|2 = 2(|β|2|α|2 − Re{β2(α∗)2}), (A.32)

|〈ψ |ψ〉|2 = 1 = |α|4 + 2 |α|2 |β|2 + |β|4 . (A.33)

Define the nonnegative quantities qZ, qX and qXZ as in (6)–(8). The quantities qZ, qX and
qXZ sum to one using (A.30)–(A.33): qZ + qX + qXZ = 1. Use the following shorthand for
the conditional probabilities:

py1|s1 ≡ pY |S (y1|s1) , (A.34)

py2|s2 ≡ pY |S (y2|s2) . (A.35)

I now prove that conditional probability differences p0|0 −p0|1 and p1|1 −p1|0 are nonnegative
and equal to each other. Consider the conditional probability p0|0:

p0|0 = pY |S (0|0) (A.36)

= Pr
{
u
(
(−1)S+1 A + N − θ

) = 0|S = 0
}

(A.37)

= Pr {u (−A + N − θ) = 0} (A.38)

= Pr {−A + N − θ < 0} (A.39)

= Pr {N < θ + A} (A.40)

=
∫ θ+A

−∞
pN (n) dn, (A.41)

where pN (n) is the density of the noise N. The other three conditional probabilities follow
from similar reasoning:

p0|1 =
∫ θ−A

−∞
pN (n) dn, (A.42)

p1|1 =
∫ ∞

θ−A

pN (n) dn, (A.43)

12
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p1|0 =
∫ ∞

θ+A

pN (n) dn. (A.44)

So the conditional probability differences are equal and nonnegative because pN (n) is
nonnegative:

p0|0 − p0|1 =
∫ θ+A

θ−A

pN (n) dn, (A.45)

p1|1 − p1|0 =
∫ θ+A

θ−A

pN (n) dn. (A.46)

Define the nonnegative quantity P ≡ p0|0 − p0|1 = p1|1 − p1|0. Let us return to the proof of
the fidelity expression. Expand the fidelity F from (A.29) as follows:

= 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p0|0p0|0 + p0|0p0|1qZ + p0|1p0|0qX+
p0|1p0|1qXZ + p0|0p1|0qZ + p0|0p1|1+

p0|1p1|0qXZ + p0|1p1|1qX + p1|0p0|0qX+
p1|0p0|1qXZ + p1|1p0|0 + p1|1p0|1qZ+

p1|0p1|0qXZ + p1|0p1|1qX + p1|1p1|0qZ+
p1|1p1|1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(A.47)

= 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0|0p0|0 + p0|0p1|1+
p1|1p0|0 + p1|1p1|1+[

p0|0p1|0 + p0|0p0|1+
p1|1p0|1 + p1|1p1|0

]
qZ+[

p0|1p0|0 + p0|1p1|1+
p1|0p0|0 + p1|0p1|1

]
qX+[

p0|1p0|1 + p0|1p1|0+
p1|0p0|1 + p1|0p1|0

]
qXZ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A.48)

= 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p0|0p0|0 + p0|0p1|1+
p1|1p0|0 + p1|1p1|1+[

p0|0p1|0 + p0|0p0|1+
p1|1p0|1 + p1|1p1|0

]
(qZ + qX) +[

p0|1p0|1 + p0|1p1|0+
p1|0p0|1 + p1|0p1|0

]
qXZ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(A.49)

= 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p0|0p0|0 + p0|0p1|1+
p1|1p0|0 + p1|1p1|1+[

p0|0p1|0 + p0|0p0|1+
p1|1p0|1 + p1|1p1|0

]
(1 − qXZ) +[

p0|1p0|1 + p0|1p1|0+
p1|0p0|1 + p1|0p1|0

]
qXZ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(A.50)

= 1

4

⎛
⎜⎜⎝

p0|0 + p0|0+
p1|1 + p1|1+[

Pp0|1 + Pp1|0+
Pp0|1 + Pp1|0

]
(−qXZ)

⎞
⎟⎟⎠ (A.51)

13
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= 1

4

(
2 + 2P

+
[
2P
(
p0|1 + p1|0

)]
(−qXZ)

)
(A.52)

= (2 + 2P
(
1 − qXZ

(
p0|1 + p1|0

)))
/4 (A.53)

= (1 + P
(
1 − qXZ

(
1 − p1|1 + p1|0

)))
/2 (A.54)

= (1 + P (1 − qXZ + qXZP )) /2 (A.55)

= 1

2
+

P (qX + qZ + qXZP )

2
. (A.56)

The quantities qX + qZ, qXZ, P in the above expression are nonnegative.
�

Proof (Corollary 1). First characterize the relationship between random variables S and Y
and parameter P. Then translate this relationship to the fidelity F by using (10). Expand the
probability pY (y) using the law of total probability:

pY (y) = pY |S (y|0) pS (0) + pY |S (y|1) pS (1) (A.57)

= pY |S (y|0) pS (0) + pY |S (y|1) (1 − pS (0)) (A.58)

= (pY |S (y|0) − pY |S (y|1)
)
pS (0) + pY |S (y|1) . (A.59)

Consider when y = 0:

pY (0) = (pY |S (0|0) − pY |S (0|1)
)
pS (0) + pY |S (0|1) (A.60)

= PpS (0) + pY |S (0|1) . (A.61)

The probability pY (0) = pY |S (0|1) when parameter P = 0. Expand the probability pY (y)

in a similar manner so that

pY (y) = (pY |S (y|1) − pY |S (y|0)
)
pS (1) + pY |S (y|0) . (A.62)

Consider when y = 1:

pY (1) = (pY |S (1|1) − pY |S (1|0)
)
pS (1) + pY |S (1|0) (A.63)

PpS (1) + pY |S (1|0) . (A.64)

The probability pY (1) = pY |S (1|0) when parameter P = 0. Random variables Y and S are
independent if and only if parameter P = 0 because the probabilities pY (0) and pY (1) are
equal to probabilities conditioned on S. Detection is perfect if and only if the conditional
probabilities pY |S (0|0) = pY |S (1|1) = 1. Suppose P = 1. Then

1 = pY |S (0|0) − pY |S (0|1) (A.65)

= pY |S (0|0) − (1 − pY |S (1|1)
)

(A.66)

= pY |S (0|0) − 1 + pY |S (1|1) (A.67)

⇔ 2 = pY |S (0|0) + pY |S (1|1) . (A.68)

Both pY |S (0|0) = pY |S (1|1) = 1 because they are probabilities and neither pY |S (0|0) nor
pY |S (1|1) can be greater than one. So detection is perfect if and only if P = 1. Parameter P
varies between zero and one. The fidelity F becomes minimum at 1/2 if P vanishes by using

14
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(10). A nonzero value of P corresponds to statistical dependence of random variables S and Y
and gives a fidelity F > 1/2. Perfect detection gives P = 1 and gives a perfect fidelity F = 1
because qX, qZ and qXZ are nonnegative and sum to one using (A.30)–(A.33). �

Proof (Theorem 1). Suppose the noise mean μ is not in the forbidden interval: μ /∈
(θ − A, θ + A). Then I prove that P vanishes when the finite variance σ 2 → 0. The fidelity
F approaches its minimum of 1/2 when P → 0. Thus the fidelity F rises from its minimum
at 1/2 as the channel adds some noise. The ‘what goes down must come up’ proof strategy
is the same as the earlier forbidden-interval theorem proofs [12, 13]. I include the full proof
for completeness. I first prove the sufficient condition. Ignore the zero-measure case when
μ = θ + A or μ = θ − A. Suppose the noise mean μ > θ + A. Pick ε = (μ − θ − A) /2 > 0
so that θ + A + ε = μ − ε. Consider parameter P:

P =
∫ θ+A

θ−A

pN (n) dn (A.69)

�
∫ θ+A

−∞
pN (n) dn (A.70)

�
∫ θ+A+ε

−∞
pN (n) dn (A.71)

=
∫ μ−ε

−∞
pN (n) dn (A.72)

= Pr {N < μ − ε} (A.73)

= Pr {N − μ < −ε} (A.74)

� Pr {|N − μ| > ε} (A.75)

� σ 2

ε2
→ 0 as σ 2 → 0. (A.76)

Suppose the noise mean μ < θ −A. Pick ε = (θ − A − μ) /2 > 0 so that θ −A− ε = μ + ε.
Consider parameter P:

P =
∫ θ+A

θ−A

pN (n) dn (A.77)

�
∫ ∞

θ−A

pN (n) dn (A.78)

�
∫ ∞

θ−A−ε

pN (n) dn (A.79)

=
∫ ∞

μ+ε

pN (n) dn (A.80)

= Pr {N > μ + ε} (A.81)

= Pr {N − μ > ε} (A.82)
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� Pr {|N − μ| > ε} (A.83)

� σ 2

ε2
→ 0 as σ 2 → 0. (A.84)

I now prove that the forbidden-interval condition is necessary for the SR noise benefit. Suppose
the noise mean μ is in the forbidden interval: μ ∈ (θ − A, θ + A). Then I prove that parameter
P → 1 as σ 2 → 0 and thus the fidelity F → 1 by corollary 1. So the nonomonotone SR
noise benefit does not occur as the noise variance vanishes. Parameter P → 1 if and only if
the conditional probabilities pY |S (0|0) → 1 and pY |S (1|1) → 1. Consider the conditional
probability pY |S (0|0). Pick ε = (θ + A − μ) /2. Then θ + A − ε = μ + ε.

pY |S (0|0) =
∫ θ+A

−∞
pN (n) dn (A.85)

�
∫ θ+A−ε

−∞
pN (n) dn (A.86)

=
∫ μ+ε

−∞
pN (n) dn (A.87)

= Pr {N < μ + ε} (A.88)

= Pr {N − μ < ε} (A.89)

= 1 − Pr {N − μ � ε} (A.90)

� 1 − Pr {|N − μ| � ε} (A.91)

� 1 − σ 2

ε2
→ 1 as σ 2 → 0. (A.92)

Consider the conditional probability pY |S (1|1). Pick ε = (μ − θ + A) /2. Then θ − A + ε =
μ − ε so that

pY |S (1|1) =
∫ ∞

θ−A

pN (n) dn (A.93)

�
∫ ∞

θ−A+ε

pN (n) dn (A.94)

=
∫ ∞

μ−ε

pN (n) dn (A.95)

= Pr {N > μ − ε} (A.96)

= Pr {N − μ > −ε} (A.97)

= 1 − Pr {N − μ � −ε} (A.98)

� 1 − Pr {|N − μ| � ε} (A.99)

� 1 − σ 2

ε2
→ 1 as σ 2 → 0. (A.100)
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So parameter P → 1 because the conditional probabilities pY |S (0|0) → 1 and pY |S (1|1) → 1.
The fidelity F → 1 as the noise vanishes and the nonmonotone SR noise benefit does not
occur.

�

Proof (Theorem 2). Suppose the noise location a is not in the forbidden interval:
a /∈ (θ − A, θ + A). Then I prove that P vanishes when the dispersion γ → 0. The
fidelity F approaches its minimum of 1/2 when P → 0. Thus the fidelity F rises from its
minimum at 1/2 as the classical channel adds some noise. The alpha-stable proof strategy
is the same as the earlier alpha-stable forbidden-interval theorem proofs [12, 13]. I include
the full proof for completeness. The proof for the alpha-stable case is simple because the
characteristic function in (11) and (12) approaches the following as the dispersion vanishes:

lim
γ→0

ϕ (ω) = exp (iaω) . (A.101)

The inverse Fourier transform of the characteristic function gives the limiting density as a
translated delta function: limγ→0 pN (n) = δ (n − a). I first prove the sufficient condition.
Ignore the zero-measure case when μ = θ + A or μ = θ − A. Consider parameter P:

lim
γ→0

P = lim
γ→0

∫ θ+A

θ−A

pN (n) dn

=
∫ θ+A

θ−A

δ (n − a) dn = 0.

So the fidelity F approaches its minimum at 1/2 as the channel noise dispersion γ vanishes.
I now prove that the forbidden-interval condition is necessary for the nonmonotone SR noise
benefit. Suppose the noise location a is in the forbidden interval: a ∈ (θ − A, θ + A). Then
I prove that parameter P → 1 as γ → 0 and thus the fidelity F → 1 by corollary 1. So the
nonomonotone SR effect does not occur as the noise dispersion vanishes. Parameter P → 1
if and only if the conditional probabilities pY |S (0|0) → 1 and pY |S (1|1) → 1. Consider the
conditional probability pY |S (0|0):

lim
γ→0

pY |S (0|0) = lim
γ→0

∫ θ+A

−∞
pN (n) dn =

∫ θ+A

−∞
δ (n − a) dn = 1.

Consider the conditional probability pY |S (1|1):

lim
γ→0

pY |S (1|1) = lim
γ→0

∫ ∞

θ−A

pN (n) dn =
∫ ∞

θ−A

δ (n − a) dn = 1.

So parameter P → 1 because the conditional probabilities pY |S (0|0) → 1 and pY |S (1|1) → 1.
The fidelity F → 1 as the noise vanishes and the nonmonotone SR noise benefit does not
occur.

�
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[15] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[16] Devetak I, Harrow A W and Winter A 2008 IEEE Trans. Inf. Theory 54 4587
[17] Ting J J L 1999 Phys. Lett. A 259 349
[18] Ting J J-L 2000 Eur. Phys. J. B 13 527
[19] Ting J J-L 1999 Phys. Rev. E 59 2801
[20] Nielsen M and Chuang I 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge

University Press)
[21] Cover T M and Thomas J A 1991 Elements of Information Theory (New York: Wiley)
[22] Popescu S 1994 Phys. Rev. Lett. 72 797
[23] Breiman L 1968 Probability (Reading, MA: Addison-Wesley)
[24] Werner R F 1989 Phys. Rev. A 40 4277
[25] Gottesman D and Chuang I 1999 Nature 402 390
[26] Knill E, Laflamme R and Milburn G 2001 Nature 409 46

18


	1. Introduction
	2. A model for stochastic resonance in quantum teleportation 
	3. Forbidden-interval theorems for quantum teleportation
	3.1. SR with finite-variance noise
	3.2. SR with infinite-variance noise

	4. Imperfect entanglement
	5. Conclusion
	Acknowledgments
	Appendix. Proofs
	References

